































Full size OSD specimen to study the behavior of Fra type fatigue cracks



токуе стту или



















































ждюли∧+









































































## 





















╸┝╺╠╶┫╸┝╺╠╶┫╸┥╺┝╶┫╸┥╺╞╶┆╸┥╺╞╶╬╸┫╸╞╶╬╸┫╺╞╺╠╸┫╸┝╶╠╺┨╸┥╸╸













It is necessary for fatigue assessment to evaluate stresses due to both rear and front axle loads.













































| 静<br>確 | 的載荷試験と疲労試験による<br>認                               |
|--------|--------------------------------------------------|
| •      | 静的載荷試験により,FEMで検討された事<br>頃の確認 および挙動の特徴を確認する       |
|        | 疲労試験により,検討された鋼床版形状<br>が十分な疲労耐久性を有していることを確<br>認する |
|        | 東京都市大学                                           |











































